Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 2-amino-4,6-bis(4-fluorophenyl)cyclohexa-1,3-diene-1-carboxylate

Jerry P. Jasinski,^a* James A. Golen,^a S. Samshuddin,^b B. Narayana^b and H. S. Yathirajan^c

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India Correspondence e-mail: jjasinski@keene.edu

Received 30 December 2011; accepted 27 January 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.055; wR factor = 0.180; data-to-parameter ratio = 14.1.

In the title compound, $C_{21}H_{19}F_2NO_2$, the cyclohexa-1,3-diene ring is in a distorted envelope conformation. The dihedral angles between the mean planes of the diene moiety and the two fluorophenyl rings are 42.8(2) and $75.0(5)^{\circ}$. The two fluorophenyl rings are inclined to one another by $87.0 (3)^{\circ}$. In the crystal, intramolecular N-H···O hydrogen bonds and weak $N-H\cdots O$ and $N-H\cdots F$ intermolecular interactions are observed forming an infinite two-dimensional network along [011].

Related literature

For background to the applications of cyclohexenones, see: Padmavathi et al. (1999, 2000); Padmavathi, Sharmila, Balaiah et al. (2001); Padmavathi, Sharmila, Somashekara Reddy & Bhaskar Reddy (2001). For the structure of the precursor of the title compound, see: Dutkiewicz et al. (2011). For various derivatives of 4,4-difluorochalcone, see: Fun et al. (2010a,b); Jasinski et al. (2010a,b). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data	
$C_{21}H_{19}F_2NO_2$	a = 18.0199(5) Å
$M_r = 355.37$	b = 9.6391 (2) Å
Orthorhombic, Pbcn	c = 21.0754 (7) Å

V = 3660.70 (18)	Å ³
Z = 8	
Cu $K\alpha$ radiation	

Data collection

Oxford Xcalibur Eos Gemini
diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2010)
$T_{\min} = 0.856, \ T_{\max} = 0.910$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	H atoms treated by a mixture of
$wR(F^2) = 0.180$	independent and constrained
S = 1.04	refinement
3461 reflections	$\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^{-3}$
245 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1B \cdot \cdot \cdot O2^i$	0.86 (3)	2.23 (3)	3.066 (2)	165 (2)
$N1 - H1A \cdots O2$	0.88(2)	2.06(2)	2.708 (2)	130.3 (19)
$N1-H1A\cdots F1^{ii}$	0.88 (2)	2.37 (2)	3.104 (2)	141.9 (19)

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z; (ii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1.

Data collection: CrvsAlis PRO (Oxford Diffraction, 2010): cell refinement: CrvsAlis PRO; data reduction: CrvsAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

HSY thanks the University of Mysore for research facilities. JPJ acknowledges the NSF-MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2046).

References

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, 0336.
- Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, 0582-0583.
- Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, 0864-0865.
- Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948-o1949.
- Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o2018.
- Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Padmavathi, V., Mohana Reddy, B. J., Balaiah, A., Venugopal Reddy, K. & Bhaskar Reddy, D. (2000). Molecules, 5, 1281-1286.
- Padmavathi, V., Sharmila, K., Balaiah, A., Somashekara Reddy, A. & Bhaskar Reddy, D. (2001). Synth. Commun. 31, 2119-2126.
- Padmavathi, V., Sharmila, K., Padmaja, A. & Bhaskar Reddy, D. (1999). Heterocycl. Commun. 5, 451-456.
- Padmavathi, V., Sharmila, K., Somashekara Reddy, A. & Bhaskar Reddy, D. (2001). Indian. J. Chem. Sect. B, 40, 11-14.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

 $\mu = 0.80 \text{ mm}^{-1}$ T = 173 K

 $R_{\rm int} = 0.017$

 $0.20 \times 0.14 \times 0.12 \text{ mm}$

10556 measured reflections 3461 independent reflections

2612 reflections with $I > 2\sigma(I)$

supplementary materials

Acta Cryst. (2012). E68, o585 [doi:10.1107/S160053681200373X]

Ethyl 2-amino-4,6-bis(4-fluorophenyl)cyclohexa-1,3-diene-1-carboxylate

Jerry P. Jasinski, James A. Golen, S. Samshuddin, B. Narayana and H. S. Yathirajan

Comment

Cyclohexenones are efficient synthons in building spiro compounds (Padmavathi, Sharmila, Somashekara Reddy & Bhaskar Reddy, 2001) or intermediates in the synthesis of benzisoxazoles or carbazole derivatives (Padmavathi *et al.*, 1999, 2000; Padmavathi, Sharmila, Balaiah *et al.*, 2001). The cyclohexenone derivative of 4,4-difluorochalcone reacts with ammonium acetate to yield the title compound (I). The crystal structure of (1RS,6SR)-ethyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate, which is the precursor of the title compound (I), has been reported (Dutkiewicz *et al.*, 2011). In continuation of our work on the synthesis of various derivatives of 4,4-difluorochalcone (Fun *et al.*, 2010*a*,*b*; Jasinski *et al.*, 2010*a*,*b*), the title compound, (I), was synthesized and its crystal structure is reported here.

In the title compound, $C_{21}H_{19}F_2NO_2$, the 1,3-cyclohexadiene ring is in a distorted envelope conformation with Cremer & Pople puckering parameters Q, θ and φ of 0.389 (2) Å, 115.8 (3)° and 90.9 (4)° (Cremer & Pople, 1975). For an ideal envelope conformation θ and φ are 54.7° and 120°. The dihedral angles between the mean planes of the diene moiety (C4/C3/O2/O1) and the two fluorophenyl rings are 42.8 (2)° and 75.0 (5)°, respectively (Fig. 1). The two fluorophenyl rings are inclined to one another by 87.0 (3)°. Intramolecular N—H…O hydrogen bonds and weak N—H…O, N—H…F intermolecular interactions (Table 1) are observed forming an infinite 2-D network along [011] (Fig. 2).

Experimental

A mixture of ethyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate (3.55 g, 0.01 mol) and ammonim acetate (0.77g, 0.01 mol) in 20 ml of ethanol was refluxed for 10 h. The reaction mixture was cooled and poured into 50 ml of ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from DMF by the slow evaporation method and the yield of the compound was 70%. (m.p. 428 K).

Refinement

H1A and H1B were located by a difference map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with atom—H lengths of 0.95 Å (CH), 0.99 Å (CH₂) or 0.98 Å (CH₃). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH₂) or 1.5 (CH₃) times U_{eq} of the parent atom.

Computing details

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO* (Oxford Diffraction, 2010); data reduction: *CrysAlis RED* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.

Figure 2

Packing diagram of the title compound viewed along the c axis. Dashed lines indicate N—H…O intramolecular hydrogen bonds and weak N—H…O, N—H…F intermolecular interactions forming an infinite 2-D network along [011]. Remaining H atoms have been removed for clarity.

Ethyl 2-amino-4,6-bis(4-fluorophenyl)cyclohexa-1,3-diene-1-carboxylate

Crystal data	
$C_{21}H_{19}F_2NO_2$	F(000) = 1488
$M_r = 355.37$	$D_{\rm x} = 1.290 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbcn	Cu K α radiation, $\lambda = 1.54178$ Å
Hall symbol: -P 2n 2ab	Cell parameters from 4418 reflections
a = 18.0199 (5) Å	$\theta = 3.2 - 71.3^{\circ}$
b = 9.6391(2) Å	$\mu = 0.80 \text{ mm}^{-1}$
c = 21.0754 (7) Å	T = 173 K
$V = 3660.70 (18) \text{ Å}^3$	Block, yellow
Z = 8	$0.20 \times 0.14 \times 0.12 \text{ mm}$
Data collection	
Oxford Xcalibur Eos Gemini	ω scans
diffractometer	Absorption correction: multi-scan
Radiation source: Enhance (Cu) X-ray Source	(CrysAlis RED; Oxford Diffraction, 2010)
Graphite monochromator	$T_{\min} = 0.856, T_{\max} = 0.910$
Detector resolution: 16.1500 pixels mm ⁻¹	10556 measured reflections

3461 independent reflections	$h = -21 \rightarrow 16$
2612 reflections with $I > 2\sigma(I)$	$k = -11 \rightarrow 11$
$R_{\rm int} = 0.017$	$l = -22 \rightarrow 25$
$\theta_{\rm max} = 71.4^{\circ}, \theta_{\rm min} = 4.2^{\circ}$	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.055$	H atoms treated by a mixture of independent
$wR(F^2) = 0.180$	and constrained refinement
S = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.1072P)^2 + 0.4506P]$
3461 reflections	where $P = (F_o^2 + 2F_c^2)/3$
245 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), Fc*=kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
map	Extinction coefficient: 0.0010 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

x	12	_	TT +/TT	
	y	Z	$U_{\rm iso} * / U_{\rm eq}$	
0.28820 (7)	0.39132 (16)	0.58085 (8)	0.0963 (5)	
0.66890 (12)	0.94956 (19)	0.80642 (12)	0.1445 (8)	
0.57361 (8)	0.00028 (13)	0.57519 (7)	0.0679 (4)	
0.66652 (8)	0.05261 (14)	0.50837 (8)	0.0695 (4)	
0.72288 (11)	0.3120 (2)	0.51875 (9)	0.0692 (5)	
0.7509 (15)	0.380 (3)	0.5083 (10)	0.076 (7)*	
0.7197 (12)	0.239 (2)	0.4942 (11)	0.066 (6)*	
0.49783 (15)	-0.1988 (2)	0.57203 (16)	0.0931 (8)	
0.4854	-0.2832	0.5484	0.140*	
0.4545	-0.1375	0.5734	0.140*	
0.5124	-0.2235	0.6154	0.140*	
0.56045 (13)	-0.12602 (19)	0.53997 (12)	0.0746 (6)	
0.6054	-0.1850	0.5401	0.089*	
0.5473	-0.1043	0.4954	0.089*	
0.62737 (10)	0.08577 (18)	0.55369 (10)	0.0578 (5)	
0.63143 (11)	0.21328 (19)	0.58891 (10)	0.0572 (5)	
0.67799 (11)	0.31852 (19)	0.56986 (10)	0.0572 (5)	
0.68054 (11)	0.44920 (19)	0.60540 (10)	0.0609 (5)	
0.7040	0.5274	0.5867	0.073*	
0.65069 (11)	0.4618 (2)	0.66361 (10)	0.0600 (5)	
	0.28820 (7) 0.66890 (12) 0.57361 (8) 0.66652 (8) 0.72288 (11) 0.7509 (15) 0.7197 (12) 0.49783 (15) 0.4854 0.4545 0.5124 0.56045 (13) 0.6054 0.5473 0.62737 (10) 0.63143 (11) 0.67799 (11) 0.68054 (11) 0.7040 0.65069 (11)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C8	0.61518 (13)	0.3357 (2)	0.69326 (10)	0.0667 (5)
H8A	0.5763	0.3668	0.7232	0.080*
H8B	0.6532	0.2852	0.7181	0.080*
C9	0.58026 (11)	0.23520 (19)	0.64523 (10)	0.0592 (5)
H9A	0.5759	0.1435	0.6671	0.071*
C10	0.50212 (11)	0.27746 (17)	0.62632 (9)	0.0559 (5)
C11	0.44170 (12)	0.2002 (2)	0.64594 (11)	0.0684 (6)
H11A	0.4499	0.1195	0.6709	0.082*
C12	0.37006 (13)	0.2363 (2)	0.63060 (12)	0.0770 (6)
H12A	0.3293	0.1813	0.6443	0.092*
C13	0.35890 (12)	0.3530 (2)	0.59515 (11)	0.0690 (6)
C14	0.41611 (13)	0.4322 (2)	0.57387 (12)	0.0748 (6)
H14A	0.4070	0.5126	0.5490	0.090*
C15	0.48779 (12)	0.3937 (2)	0.58902 (11)	0.0715 (6)
H15A	0.5281	0.4476	0.5737	0.086*
C16	0.65610 (11)	0.5913 (2)	0.70079 (11)	0.0648 (5)
C17	0.66870 (14)	0.7180 (2)	0.67350 (13)	0.0781 (6)
H17A	0.6753	0.7226	0.6288	0.094*
C18	0.67220 (15)	0.8387 (3)	0.70790 (17)	0.0898 (8)
H18A	0.6790	0.9256	0.6874	0.108*
C19	0.66577 (16)	0.8309 (3)	0.77206 (18)	0.0979 (9)
C20	0.6589 (2)	0.7078 (3)	0.80307 (16)	0.1065 (10)
H20A	0.6580	0.7039	0.8481	0.128*
C21	0.65327 (18)	0.5888 (3)	0.76701 (13)	0.0934 (8)
H21A	0.6473	0.5023	0.7879	0.112*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0684 (8)	0.0980 (10)	0.1224 (13)	0.0017 (7)	-0.0188 (8)	-0.0061 (8)
F2	0.1599 (17)	0.0981 (12)	0.175 (2)	-0.0024 (11)	0.0216 (15)	-0.0716 (13)
01	0.0700 (8)	0.0498 (7)	0.0838 (10)	-0.0096 (6)	0.0083 (7)	-0.0045 (6)
O2	0.0641 (8)	0.0553 (7)	0.0891 (11)	0.0019 (6)	0.0118 (8)	-0.0099 (7)
N1	0.0711 (11)	0.0588 (10)	0.0776 (13)	-0.0125 (8)	0.0186 (10)	-0.0101 (9)
C1	0.0954 (18)	0.0609 (12)	0.123 (2)	-0.0220 (12)	0.0001 (16)	0.0023 (13)
C2	0.0793 (14)	0.0475 (10)	0.0970 (17)	-0.0052 (9)	-0.0028 (12)	-0.0052 (10)
C3	0.0523 (9)	0.0474 (9)	0.0737 (13)	0.0016 (7)	-0.0012 (10)	0.0031 (8)
C4	0.0568 (10)	0.0500 (9)	0.0646 (12)	-0.0010 (8)	0.0013 (9)	0.0002 (8)
C5	0.0565 (10)	0.0524 (9)	0.0627 (12)	-0.0008 (8)	0.0039 (9)	-0.0009 (8)
C6	0.0622 (11)	0.0510 (9)	0.0696 (13)	-0.0085 (8)	0.0040 (10)	-0.0006 (8)
C7	0.0620 (11)	0.0568 (10)	0.0613 (12)	-0.0023 (8)	-0.0005 (9)	-0.0001 (8)
C8	0.0737 (13)	0.0658 (11)	0.0607 (12)	-0.0078 (9)	0.0050 (10)	0.0020 (9)
C9	0.0644 (11)	0.0490 (9)	0.0642 (12)	-0.0044 (8)	0.0068 (9)	0.0062 (8)
C10	0.0627 (11)	0.0452 (8)	0.0598 (11)	-0.0051 (8)	0.0086 (9)	-0.0033 (7)
C11	0.0690 (12)	0.0577 (11)	0.0784 (14)	-0.0072 (9)	0.0090 (11)	0.0090 (9)
C12	0.0653 (12)	0.0725 (13)	0.0932 (17)	-0.0160 (10)	0.0096 (12)	0.0049 (12)
C13	0.0622 (12)	0.0663 (12)	0.0786 (14)	0.0002 (9)	-0.0066 (11)	-0.0128 (10)
C14	0.0780 (14)	0.0578 (11)	0.0886 (16)	-0.0029 (10)	-0.0080 (12)	0.0086 (10)
C15	0.0680 (13)	0.0568 (11)	0.0897 (16)	-0.0090 (9)	0.0015 (11)	0.0141 (10)
C16	0.0651 (11)	0.0623 (11)	0.0671 (13)	0.0023 (9)	0.0036 (10)	-0.0047 (9)

supplementary materials

C17	0.0852 (15)	0.0661 (13)	0.0831 (16)	-0.0069 (10)	0.0037 (12)	-0.0076 (11)
C18	0.0873 (17)	0.0642 (13)	0.118 (2)	-0.0003 (11)	0.0098 (16)	-0.0136 (14)
C19	0.0881 (18)	0.0780 (16)	0.128 (3)	0.0035 (13)	0.0108 (16)	-0.0422 (16)
C20	0.129 (3)	0.098 (2)	0.092 (2)	0.0000 (17)	0.0041 (18)	-0.0281 (16)
C21	0.119 (2)	0.0792 (15)	0.0816 (18)	-0.0014 (14)	0.0062 (15)	-0.0085 (13)

Geometric parameters (Å, °)

F1—C13	1.360 (2)	C8—H8B	0.9900
F2—C19	1.355 (3)	C9—C10	1.519 (3)
O1—C3	1.350 (2)	С9—Н9А	1.0000
O1—C2	1.445 (2)	C10—C11	1.382 (3)
O2—C3	1.230 (2)	C10—C15	1.393 (3)
N1—C5	1.348 (3)	C11—C12	1.375 (3)
N1—H1B	0.86 (3)	C11—H11A	0.9500
N1—H1A	0.88 (2)	C12—C13	1.366 (3)
C1—C2	1.491 (3)	C12—H12A	0.9500
C1—H1C	0.9800	C13—C14	1.359 (3)
C1—H1D	0.9800	C14—C15	1.381 (3)
C1—H1E	0.9800	C14—H14A	0.9500
C2—H2A	0.9900	C15—H15A	0.9500
C2—H2B	0.9900	C16—C17	1.369 (3)
C3—C4	1.438 (3)	C16—C21	1.397 (4)
C4—C5	1.376 (3)	C17—C18	1.372 (3)
C4—C9	1.518 (3)	C17—H17A	0.9500
C5—C6	1.466 (3)	C18—C19	1.359 (5)
С6—С7	1.345 (3)	C18—H18A	0.9500
С6—Н6А	0.9500	C19—C20	1.360 (4)
C7—C16	1.478 (3)	C20—C21	1.379 (4)
С7—С8	1.508 (3)	C20—H20A	0.9500
С8—С9	1.536 (3)	C21—H21A	0.9500
C8—H8A	0.9900		
C_{3} O_{1} C_{2}	117 35 (16)	CA CO HOA	106.6
$C_{5} = 01 = C_{2}$	117.55(10) 121.5(15)	C4 - C9 - H9A	106.6
$C_5 N_1 H_1 \Lambda$	121.3(13) 118.0(15)	C10-C9-H9A	106.6
$U_{J} = N_{I} = \Pi_{I} A$	110.0(15) 120(2)	$C_{0} = C_{0} = H_{0} A$	117.12 (10)
$\Pi D - \Pi - \Pi IA$	120 (2)	C11 = C10 = C13	117.13(19) 120.48(17)
$C_2 = C_1 = H_1 D_1$	109.5	C11 - C10 - C9	120.48(17) 122.39(17)
	109.5	C13 - C10 - C9	122.39(17) 122.20(10)
$\Gamma = \Gamma = \Gamma = \Gamma = \Gamma$	109.5	C_{12} C_{11} C_{10} C_{11} C	122.20 (19)
	109.5	C12— $C11$ — $H11A$	118.9
	109.5	C10 $C12$ $C11$	118.4(2)
$\Pi D - C I - \Pi I E$	109.5	$C_{13} = C_{12} = C_{11}$	110.4 (2)
01 - 02 - 01	100.7(2)	C13 - C12 - H12A	120.8
OI = C2 = H2A	110.4	C11 - C12 - H12A C14 - C13 - F1	120.8
C1 = C2 = H2R	110.4	C14 - C13 - F1	119.0(2)
C1 = C2 = H2P	110.4	C14 - C13 - C12 E1 - C13 - C12	122.1(2) 118 Q(2)
$U_1 - U_2 - I_{12}D$ $U_2 \wedge C_2 - U_2 D$	10.4	$\Gamma_1 = C_{13} = C_{12}$	110.7(2) 118.8(2)
112A - 02 - 112D 02 - 03 - 01	120.01 (17)	C_{13} C_{14} C_{13} C_{14} C	110.0 (2)
02-03-01	120.71 (17)		120.0

$0^{2}-C^{3}-C^{4}$	126 45 (17)	C15—C14—H14A	120.6
01 - C3 - C4	120.45(17) 112.64(17)	C14 - C15 - C10	120.0 121.3(2)
C_{5}	12.04 (17)	C14 - C15 - C10	110.3
$C_{5} - C_{4} - C_{9}$	120.09(10) 119.73(17)	C10-C15-H15A	119.3
$C_3 = C_4 = C_7$	119.75 (17)	C17 $C16$ $C21$	119.3 116.2(2)
$C_3 - C_4 - C_7$	119.40(10) 124.37(18)	C17 - C16 - C7	110.2(2)
N1 = C5 = C4	124.37(10) 115.42(17)	C1/-C16-C7	122.8(2) 120.8(2)
$R_{1} = C_{2} = C_{0}$	113.42(17) 120.21(18)	$C_{21} = C_{10} = C_{7}$	120.8(2)
C4 = C3 = C6	120.21(18)	C10-C17-C18	122.8 (3)
$C_{1} = C_{0} = C_{3}$	122.00 (17)	C10-C17-H17A	118.0
C = C = H C A	119.0	C18 - C17 - H17A	118.0
	119.0		118.3 (3)
	122.23 (18)	C19—C18—H18A	120.8
C6-C7-C8	118.36 (18)	C17—C18—H18A	120.8
C16—C7—C8	119.27 (18)	F2	118.8 (3)
C7—C8—C9	114.13 (17)	F2—C19—C20	118.9 (3)
С7—С8—Н8А	108.7	C18—C19—C20	122.3 (2)
С9—С8—Н8А	108.7	C19—C20—C21	117.9 (3)
C7—C8—H8B	108.7	C19—C20—H20A	121.1
C9—C8—H8B	108.7	C21—C20—H20A	121.1
H8A—C8—H8B	107.6	C20—C21—C16	122.2 (3)
C4—C9—C10	113.29 (17)	C20—C21—H21A	118.9
C4—C9—C8	110.75 (16)	C16—C21—H21A	118.9
C10—C9—C8	112.54 (17)		
C3—O1—C2—C1	-178.43 (19)	C8—C9—C10—C15	70.1 (2)
C2—O1—C3—O2	-4.5 (3)	C15-C10-C11-C12	-1.0 (3)
C2—O1—C3—C4	175.00 (17)	C9—C10—C11—C12	179.0 (2)
O2—C3—C4—C5	5.9 (3)	C10-C11-C12-C13	-0.5 (4)
O1—C3—C4—C5	-173.59 (18)	C11—C12—C13—C14	1.2 (4)
O2—C3—C4—C9	-177.93 (19)	C11—C12—C13—F1	-178.6(2)
O1—C3—C4—C9	2.6 (3)	F1—C13—C14—C15	179.4 (2)
C3—C4—C5—N1	-0.6 (3)	C12—C13—C14—C15	-0.5 (4)
C9—C4—C5—N1	-176.69 (19)	C13—C14—C15—C10	-1.1(4)
$C_{3}-C_{4}-C_{5}-C_{6}$	178 74 (18)	C11—C10—C15—C14	18(3)
C9-C4-C5-C6	26(3)	C9-C10-C15-C14	-1782(2)
N1 - C5 - C6 - C7	-1667(2)	C6-C7-C16-C17	221(3)
C4 - C5 - C6 - C7	140(3)	C8 - C7 - C16 - C17	-1622(2)
$C_{1}^{2} = C_{2}^{2} = C_{1}^{2} = C_{1}^{2}$	177 17 (10)	$C_{0}^{-} = C_{1}^{-} = C_{1}^{-} = C_{1}^{-} = C_{1}^{-}$	-153.7(2)
$C_{5} = C_{6} = C_{7} = C_{10}$	1/7.17(19) 1/7.17(19)	$C_{0} = C_{1} = C_{10} = C_{21}$	133.7(2)
$C_{3} = C_{0} = C_{7} = C_{8}$	-210(2)	$C_{0} = C_{1} = C_{10} = C_{21}$	22.1(3)
$C_{0} - C_{7} - C_{8} - C_{9}$	-51.0(5)	$C_{21} = C_{10} = C_{17} = C_{18}$	-3.4(4)
$C_{10} - C_{10} - C_{9}$	155.08(18)	C/-C10-C1/-C18	1/8.0(2)
C_{3} C_{4} C_{9} C_{10}	96.8 (2)	C16 - C17 - C18 - C19	2.7 (4)
C_{3} C_{4} C_{9} C_{10}	-/9.4 (2)	C1/-C18-C19-F2	-1/9.8(2)
C_{3} C_{4} C_{9} C_{8}	-30.7(3)	C1/-C18-C19-C20	2.6 (5)
C3 - C4 - C9 - C8	153.10 (17)	F2-C19-C20-C21	177.8 (3)
C'/C8C9C4	43.9 (2)	C18—C19—C20—C21	-4.5 (5)
C/C8C9C10	-84.0 (2)	C19—C20—C21—C16	1.5 (5)
C4—C9—C10—C11	123.5 (2)	C17—C16—C21—C20	3.3 (4)
C8-C9-C10-C11	-109.9(2)	C7—C16—C21—C20	179.4 (3)

C4—C9—C10—C15 –56.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N1—H1B····O2 ⁱ	0.86 (3)	2.23 (3)	3.066 (2)	165 (2)
N1—H1A···O2	0.88 (2)	2.06 (2)	2.708 (2)	130.3 (19)
N1—H1A····F1 ⁱⁱ	0.88 (2)	2.37 (2)	3.104 (2)	141.9 (19)

Symmetry codes: (i) -*x*+3/2, *y*+1/2, *z*; (ii) *x*+1/2, -*y*+1/2, -*z*+1.